
Free-Form Deformation (FFD)

Author: Janeita Reid
Reviewed by: Ping He

February 18, 2021

Contents

1 General Theoretical and Mathematical Preliminaries 1

2 FFD considerations 4

3 FFD in DAFoam: pyGeo 5
3.0.1 Initial setup . 5
3.0.2 Point selection and Troubleshooting 5
3.0.3 Setting the Design Variables . 7
3.0.4 Simulation Example: NACA 0012 . 9

4 Advanced Tips and Tricks 11

5 Forum 12

1 General Theoretical and Mathematical Preliminar-

ies

Before we explain how to setup the FFD points for the pyGeo1 module from the MACH-
Aero framework, it’s essential to first understand underlying theoretical and mathematical
formulations. In doing so, the user will gain a better understanding of pyGeo’s strengths
and weaknesses and how these influence constrained optimization in any of the disciplines
supported by DAFoam (aerodynamics, solid mechanics and hydrodynamics). The guidelines
covered in this section are for general applications using FFD. More specific guidelines will be
given in the sections that follow to highlight the features of the FFD module in MACH-Aero.

pyGeo is closely tied to the concepts supporting free form deformation (FFD). FFD was
first presented by Sederberg and Perry as a method for sculpting solid models by conducting
global or local deformations [14]. The classic method involves a R3 → R3 mapping using
trivariate tensor product Bernstein polynomials[14], but this approach has evolved to also

1https://github.com/mdolab/pygeo

1

https://github.com/mdolab/MACH-Aero
https://github.com/mdolab/MACH-Aero

DAFoam User Guides

Figure 1: The pyGeo module for geometry parametrization (node 3) in the MACH-Aero
framework [8]

.

use tri-variate Bézier, B-spline or NURBS volumes [5] for mapping and remapping object
points. The FFD approach adopted in pyGeo was developed by Kenway and Martins [5].

To get a better understanding of how FFD works, one can imagine putting an object or
any geometry into a clear, flexible plastic-like shape that is transparent. In other words, by
using FFD the geometry of the object is embedded into a volume that can be manipulated
by moving points at the surface known as FFD points [3].

In order to manipulate the object and arrive at an optimized geometry, there are three steps
involved in FFD, namely :

1. Create an initial FFD box with volumetric control points (aka. FFD points).

2. Embed the design surface into the FFD box and find the mapping between the design
surface’s physical coordinates (x,y,z) and the FFD’s parameter space (u,v,w).

3. Deform the design surface by moving the FFD control points.

To transform the steps above into mathematical formulations we take four things into con-

sideration: the vertices of the initial embedded object given by
−→
P (u, v, w), the parametric

space represented by (u0, v0, w0), control points (FFD points) on the initial deformation lat-

tice given by
−→
Q i,j,k, and the vertices of the deformed object represented by P new(u0, v0, w0)

with new FFD points
−→
Qnew

i,j,k .

Additionally, basic knowledge of B-spline curves, surfaces or volumes presented by Kenway
and Martins [5] is also necessary to understand the parametrization of different objects.

2

DAFoam User Guides

For curves we have:

C(u) =
Nu−1∑
i=0

Ni,mu(u)Qi (1)

For surfaces we have:

S(u, v) =
Nu−1∑
i=0

Nv−1∑
j=0

Ni,mu(u)Nj,mv(v)Qi,j (2)

And for volumes we have:

V (u, v, w) =
Nu−1∑
i=0

Nv−1∑
j=0

Nw−1∑
k=0

Ni,mu(u)Nj,mv(v)Nk,mw(w)Qi,j,k (3)

A good explanation of B-spline can be found here [4]. With these in mind we develop the
steps mentioned above considering the mathematical theory behind each of the three steps.

Step 1
The first step mentioned above represents the FFD module coupled with pyGeo. This tool
will be elaborated further on in the tutorial.

Step 2
We need to consider that the embedded object which lies in a cartesian space is mapped
into an initial trivariate B-spline volume using the equations below as given by Kenway and
Martins [5] and Ronzheimer [12]. We have adopted the notations and overview presented by
Ronzheimer [10, 12] with a small modification considering Qnew

i,j,k instead of Ri,j,k.

For the mapping, a Newton method is used to calculate the parametric coordinates from
given Cartesian coordinates[11, 3]. In other words, a mapping is determined between the
FFD points (parameter space) and the surface geometry (physical space) [3]. This is done

by applying the Newton search on Equation 4 for each vertex of
−→
P by solving for u0, v0, w0

with the aim of mapping the points to the B-spline volume.

−→
P (u, v, w) =

nu∑
i=0

Ni,mu(u), Nj,mv(v), Nk,mw(w)Qi,j,k (4)

Ni,mu , Nj,mv and Nk,mw are B-spline basis functions of degree mu, mv, and mw. These
are defined as knot vectors as follows:

1. Ni : 0, .., 0, Umu+1 ..., Unu , 1, ..., 1

2. Nj : 0, .., 0, vmv+1 ..., vnv , 1, ..., 1

3. Nk : 0, .., 0, wmw+1 ..., wnw , 1, ..., 1

3

DAFoam User Guides

The basis functions mentioned previously are calculated recursively using:

Ni,1u =

{
0, ui ≤ u < ui+1,

1, otherwise.
(5)

and

Ni,mu(u) =
u− ui

ui+mu−1 − ui

Ni,mu−1(u) +
ui+mu − u

ui+mu−ui+1

Ni+1,mu−1(u)

Step 3
Finally, the B-spline volume that was calculated in Equation 4 is replaced by a new B-spline
volume with control points Qnew

i,j,k. This is done by remapping the u0, v0, w0 values previously
calculated to obtain the deformed object point represented by P new(u0, v0, w0).

−→
P new(u0, v0, w0) =

nu∑
i=0

Ni,mu(u0), Nj,mv(v0), Nk,mw(w0)Q
new
i,j,k (6)

The initial control point lattice
−→
Q i,j,k in Equation 4 and the new one in Equation 6 Qnew

i,j,k

perform the same function: to control the deformation of the embedded geometry. The final
deformation of the embedded object is determined by Qnew

i,j,k. From Figure 2 it can be seen
that the control lattice been deformed. This means that the initial points for Qi,j,k are no
longer at their original position and have shifted creating a new control lattice Qnew

i,j,k.

Figure 2: Before and after FFD points [6]
.

2 FFD considerations

FFD is best suited for small to medium deformations [13] and proper constraints should
be in place to ensure feasible geometry changes [1]. As a volumetric deformation method,

4

DAFoam User Guides

FFD offers three advantages [1]: the embedded surface geometry has minimal effect on the
computational cost, it is impartial to discrete geometry format, and the deformation quality
is independent of the surface discretization quality. The main driver behind these advantages
is that FFD volume parametrizes the geometry change rather than the geometry itself [5];
therefore, FFD eliminates the need for geometry abstraction and surface grid generation [13].

However, despite these advantages it’s worth nothing that the grid topology is held fixed to
ensure that as the design variables are modified, the function gradients are unaffected and
remain continuous[5]. The implication of this is that lattice controls the deformation of the
object and there is no continuous interactive deformation involved.

3 FFD in DAFoam: pyGeo

At the start of this tutorial, we noted that FFD allows the user to conduct both global and
local deformation. Within pyGeo we can also control both the local and global shape of
the geometry during optimization [3].The parametrization using pyGeo can be applied to
structural domain, wetted surface of an aircraft [5], airfoil surface and wind turbine blade
geometry.

In the example that follows, we will look at how to conduct a aerodynamic analysis of the
NACA 0012 airfoil and the steps taken by pyGeo to parametrize the geometry.

3.0.1 Initial setup

Before you configure the settings in your FFD folder its important to perform the following
steps first:

1. Load your mesh in the appropriate folder. You can either use a mesh you generated
from another program or run the meshing option configured in DAFoam. If you plan
to use another mesh generated from another program, it won’t be necessary to run
the preProcessing.sh command to generate your mesh in DAFoam. You’ll need to
type blockMeshDict to populate your Polymesh file in the case folder if you use a grid
generated from another program.

2. Configure your runscript.py with the appropriate values for your particular case. For
the case of optimizing for drag with lift constrained, you will need to first generate
the correct angle of attack using the following command in your terminal: mpirun
-np 4 python runScript.py –task=solveCL. But before you do that, continue to
configure your runscript.py script until you reach the section Design Variable Setup.
In the next sections we’ll elaborate some more on what to do next.

3.0.2 Point selection and Troubleshooting

Within DAFoam you will be working with two files to modify your FFD points and control
the geometric changes that are linked to the design variables in the adjoint equations: the

5

DAFoam User Guides

Design Variable Setup section in the runscript.py and the genFFD.py.

Figure 3: Code snippet from runscript.py highlighting the genFFD.py section credit:
DAFoam

Before changing the parameters for the FFD points, assess your geometry to determine which
parts of should be optimized and which should remain fixed. Parts of the geometry that will
be optimized will be enclosed with FFD control point lattices. These points will then be
manipulated according to the mathematical formulations explained above.

The number of FFD control points will influence the design freedom of an optimization
problem. Hence, the number of FFD control points used does affect the fidelity of the final
design: too few control points and we risk ignoring certain possibilities in the design space;
too many design points and we could have issues with mesh overlap, an over crowded lattice
and slower optimization. This is why it is important to choose the correct number of design
points through trial and error and assess the final design to determine if the results reflect
feasible applications.

The effect of the number of design control points was clearly seen in a study conducted by
Ronzheimer [11]. In the study it was shown that by doubling the number of FFD points from
4 to 8, the lift to drag ratio increased from 12% to 16% respectively. The optimization cycle
also increased when the design points were doubled and clear differences in the final optimized
shapes were noticed. Similar studies by Lyu, Kenway and Martins [9] demonstrated that
the effect of reducing the number of airfoil control points from 48 to 24 resulted in negligible
effect on optimal shape and pressure while further decrease to 12 and then to 6 showed
noticeable differences in drag and pressure coefficients.

As a general guide we usually use 20 points for an airfoil section. However, users can use
more or less depending on optimization goals.

6

DAFoam User Guides

3.0.3 Setting the Design Variables

We set the design variable using the pyGeo module in the MACH-Aero framework by fol-
lowing the steps below in the Design Variable Setup section of the runscript.py script:

1. Open the FFD folder in the case you are using for design optimization. It should look
something like this below with the corresponding contents:

Figure 4: Typical case setup after running a simulation credit:DAFoam

Figure 5: FFD folder contents credit: DAFoam

2. Create a DVGeo object (DVGeo = DVGeometry(“./FFD/wingFFD.xyz”)) to manip-
ulate the design surface geometry using the free-form deformation (FFD) approach.
NOTE: the FFD volume should completely contain the design surface. The
FFD file wingFFD.xyz is generated by running “python genFFD.py” in the FFD folder.
We then add a reference axis (“addRefAxis”) for twist. Note that in this case we run
2D airfoil optimization, so no twist is needed, and “bodyAxis” is not used [2].

There are two options to visualize the FFD points:

• First copy the constant folder, the system folder, and paraview.foam to the FFD
folder, then go to the FFD folder and run this command to convert the FFD mesh
(plot3D format) to the OpenFoam mesh (plot3DToFoam -noBlank wingFFD.xyz)
and use Paraview to load the FFD/paraview.foam file to view the FFD points.

• In version 2.2.1, we added a new utility to convert the plot3D file (*.xyz) format to
the Tecplot format, such that you can load the FFD point in Paraview more easily
(Paraview sometimes crashes when loading Plot3D files). To use it, just copy
over the dafoam/dafoam/scripts/dafoam plot3d2tecplot.py file and run python

7

DAFoam User Guides

dafoam plot3d2tecplot.py wingFFD.xyz wingFFDTecplot.dat. NOTE: Be
sure to copy dafoam plot3d2tecplot.py script to where you store the
wingFFD.xyz file or else you will encounter problems.

Now that you have done the necessary configurations in the genFFD.py file, the next
step is to modify the runscript.py script at the Design variable setup mentioned earlier.

3. Once the FFD file is loaded and the reference axis is created, we select FFD points to
move. The FFD file supports multi block meshes, but in this case we have only one
block in the FFD, so we select “iVol = 0”. We allow all the points to move so we set
“pts[:, :, :]” for “indexList”. Alternatively, we can select a subset of indices to move
by setting a range for pts to move, e.g., indexList = pts[1:2, 3, 5:6].flatten() [2].

Figure 6: Example with 8 FFD points where D9 and D10 are fixed [12]

If you intend to use one block to run your simulation then your block setup will look like
this below.

Figure 7: FFD setup in genFFD.py

We’ll notice that there is a nx, ny, nz. These mean the number of points in the x, y, z
coordinates.

8

DAFoam User Guides

For corners = np.zeros([nBlocks,8,3]):

The first entry is the FFD block number. In this case, there is only one block, that is why
it is always zero. For examples using more than one blocks you can check the DPW4 case
or the 30N30P Multi-element airfoil case where multiple FFD blocks are used, e.g., one for
the wing and one for the tail.

The 2nd entry is the 8 corner indices, and the 3rd entry is the x,y,z coordinates of the corners.

If you intend to use two blocks then you’ll need to modify the code to consider this type of
configuration.

3.0.4 Simulation Example: NACA 0012

In this section we’ll do a few examples to practice how to setup the getFFD.py and configure
runscript.py.

Step 1: Understand the Geometry You have
Before we do any changes in the FFD files, we need to understand the type of geometry we
are working with to know the limits of the FFD control points to consider. For a 2D airfoil
such as NACA 0012 this means that were interested in the variations along the x and y axis.
In this case we are using an airfoil with a blunt trailing edge where we removed a section.
The coordinates the airfoil have been provided below for clarity.

0.0000000 0.0000000
0.0005839 -.0042603
0.0023342 -.0084289
0.0052468 -.0125011
0.0093149 -.0164706
0.0145291 -.0203300
0.0208771 -.0240706
0.0283441 -.0276827
0.0369127 -.0311559
0.0465628 -.0344792
0.0572720 -.0376414
0.0690152 -.0406310
0.0817649 -.0434371
0.0954915 -.0460489
0.1101628 -.0484567
0.1257446 -.0506513
0.1422005 -.0526251
0.1594921 -.0543715
0.1775789 -.0558856
0.1964187 -.0571640
0.2159676 -.0582048
0.2361799 -.0590081

0.2570083 -.0595755
0.2784042 -.0599102
0.3003177 -.0600172
0.3226976 -.0599028
0.3454915 -.0595747
0.3686463 -.0590419
0.3921079 -.0583145
0.4158215 -.0574033
0.4397317 -.0563200
0.4637826 -.0550769
0.4879181 -.0536866
0.5120819 -.0521620
0.5362174 -.0505161
0.5602683 -.0487619
0.5841786 -.0469124
0.6078921 -.0449802
0.6313537 -.0429778
0.6545085 -.0409174
0.6773025 -.0388109
0.6996823 -.0366700
0.7215958 -.0345058
0.7429917 -.0323294

9

https://dafoam.github.io/mydoc_tutorials_aero_dpw4.html
https://dafoam.github.io/mydoc_tutorials_aero_30n30p.html

DAFoam User Guides

0.7638202 -.0301515
0.7840324 -.0279828
0.8035813 -.0258337
0.8224211 -.0237142
0.8405079 -.0216347
0.8577995 -.0196051
0.8742554 -.0176353
0.8898372 -.0157351
0.9045085 -.0139143
0.9182351 -.0121823
0.9309849 -.0105485

0.9427280 -.0090217
0.9534372 -.0076108
0.9630873 -.0063238
0.9716559 -.0051685
0.9791229 -.0041519
0.9854709 -.0032804
0.9906850 -.0025595
0.9947532 -.0019938
0.9976658 -.0015870
0.9994161 -.0013419

From the airfoil coordinates above, we see that your largest x value is 0.9994161, while our
largest y value is 0.0600172. This means that the lattice/ block we create needs to be a bit
bigger than 0.9994161 x 0.0600172. Let us choose one that is 1.01 x 0.07. It is important
that the control lattice is body-fitted. If the lattice is too big for example 100 x 100 for
the example above, then the gradient of dCD/dFFD will become very small (because the
FFD point is far away from the design surface). The problem with this is that dCD/dFFD
will have very different magnitudes compared with other design variables, say dCD/dAlpha
with Alpha being the angle of attack. This will cause problems for the optimizer because it
always wants to receive gradients with similar orders of magnitude. Hence, body-fitted FFD
points should be used at all times.

Step 2: Setup the FFD control points
We know that we intend to use one block and that this one will have a dimension of 1.01
x 0.07. We now need to map out the points in this block. These points will represent the
vertices of our control lattice.

To create our FFD points we need to remember that NACA 0012 is a symmetric airfoil.
We put our axis in the symmetric plane xy = 00 and start to map out our FFD control
points.The order we choose to map out the control points is as follow: start with leading
edge and then move to trailing edge. We have chosen to use 8 vertices for our block and will
modify our genFFD.py to represent this.

The first point we enter is our coordinate with vertice (x,y) = (0,0). Although we have
2D airfoil, we are actually mapping out points for a 3D lattice as shown in the corners =
np.zeros([nBlocks,8,3]). Taking this into consideration the point (0,0) will have coordinates
(−0.010,−.0700, 0.0) on our lattice. This represents the leading edge control point in the
negative y direction. The second point we consider is (−0.010,−0.0700, 0.1) which takes
into consideration the thickness of our airfoil. Still at the leading edge we consider two more
points to reflect the symmetry of our airfoil:[-0.010,0.0700,0.0] and [-0.010,0.0700,0.1]. The
first point represents control point on the positive y direction, while the second point takes
the thickness into consideration.

You will notice that so far only the leading edge and trailing edge points have been considered.
This is because we need to prescribe the corners points for the FFD box, then the genFFD.py

10

DAFoam User Guides

script will generate the coordinates for all other FFD points. To get a better understanding
of this, check the writeFFDFile and returnBlockPoints functions in genFFD.py.

Step 3: Visualize the control points
It’s important that the control points cover the geometry, otherwise there will be errors. To
visualize the control points, you can choose from two options as mentioned above.

Step 4: Apply constraints
Next we need to setup constraints to ensure that the optimized geometry is within feasible
limits. To do this we use our runscript.py to modify the constraints. Here we can apply
thickness constraints and volume constraints. FFD allows one to maintain constant volume
even after geometry changes.

Lower and upper projection points are used by the FFD during optimization to calculate the
new thickness and volume change. An example of this is shown in the image below. More
details can be obtained at Mach Aero Tutorials.

Figure 8: Example showing how volume and thickness constraints are calculated [7]
.

Step 5: Run simulation
When all the necessary parameters are entered the next step is to run mpirun -np 4 python
runScript.py. Check the result and move the control points if needed once the optimization
is complete.

4 Advanced Tips and Tricks

Ensure that your FFD points fully cover the design surface of your airfoil. You can
convert *.xyz file (FFD file) to the OpenFOAM format using this command: plot3dToFoam
-noBlank wingFFD.xyz Then you can load the FFD points and your OpenFOAM mesh into
Paraview to check if FFD points fully contain the design surface.

11

https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/machAeroTutorials/opt_aero.html#geometric-constraints

DAFoam User Guides

5 Forum

There is no better way to learn than to ask questions. You can post questions on the DAFoam
forum to get answers on bugs, general questions, tutorials, and installation. Before you post
a question, first check out the best practices below:

1. Check first to see if your question has already been answered.

2. If your question has not been answered create a new discussion ensuring that:

• The title of the question matches the details you’ll provide.

• The most appropriate category has been selected for your question.

• Your question covers all the necessary details: what you did, what did not work,
screenshots clearly showing details of your question, the results you were expecting
and so on.

3. If you find that you’ll need to ask multiple questions on different topics, consider
posting each topic separately as a new discussion. This way people are more likely
to find the question instead of scrolling through a long thread. Of course, if keeping
the discussion in one thread reduces the likelihood of confusion and makes it easier to
follow how the problem gets solved then consider doing so.

References

[1] George Anderson, Michael Aftosmis, and Marian Nemec. “Parametric Deformation of
Discrete Geometry for Aerodynamic Shape Design”. In: AIAA Paper 2012–0965 965
(Jan. 2012). doi: 10.2514/6.2012-965.

[2] DAFoam. Details of Run script. url: https://dafoam.github.io/mydoc_get_star
ted_runscript.html. (accessed: 17.02.2021).

[3] Ping He et al. “An Aerodynamic Design Optimization Framework Using a Discrete
Adjoint Approach with OpenFOAM”. In: Computers & Fluids 168 (Apr. 2018). doi:
10.1016/j.compfluid.2018.04.012.

[4] Kenneth I. Joy. DEFINITION OF A B-SPLINE CURVE. url: https://www.cs.un
c.edu/~dm/UNC/COMP258/LECTURES/B-spline.pdf.

[5] Gaetan Kenway, Graeme Kennedy, and Joaquim Martins. “A CAD-Free Approach to
High-Fidelity Aerostructural Optimization”. In: Sept. 2010. doi: 10.2514/6.2010-9
231.

[6] MDO Lab. MACH-Aero Tutorials: FFD. url: https://mdolab-mach-aero.read
thedocs-hosted.com/en/latest/machAeroTutorials/opt_ffd.html#opt-ffd.
(accessed: 17.02.2021).

[7] MDO Lab. MACH-Aero Tutorials: Geometric Constraints. url: https://mdolab-ma
ch-aero.readthedocs-hosted.com/en/latest/machAeroTutorials/opt_aero.htm

l#geometric-constraints. (accessed: 14.02.2021).

12

https://github.com/mdolab/dafoam/discussions
https://doi.org/10.2514/6.2012-965
https://dafoam.github.io/mydoc_get_started_runscript.html
https://dafoam.github.io/mydoc_get_started_runscript.html
https://doi.org/10.1016/j.compfluid.2018.04.012
https://www.cs.unc.edu/~dm/UNC/COMP258/LECTURES/B-spline.pdf
https://www.cs.unc.edu/~dm/UNC/COMP258/LECTURES/B-spline.pdf
https://doi.org/10.2514/6.2010-9231
https://doi.org/10.2514/6.2010-9231
https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/machAeroTutorials/opt_ffd.html#opt-ffd
https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/machAeroTutorials/opt_ffd.html#opt-ffd
https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/machAeroTutorials/opt_aero.html#geometric-constraints
https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/machAeroTutorials/opt_aero.html#geometric-constraints
https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/machAeroTutorials/opt_aero.html#geometric-constraints

DAFoam User Guides

[8] MDO Lab. Overview of MACH-Aero. url: https://mdolab-mach-aero.readthedoc
s-hosted.com/en/latest/machFramework/MACH-Aero.html. (accessed: 13.02.2021).

[9] Zhoujie Lyu, Gaetan K.W. Kenway, and Joaquim R.R.A. Martins. “RANS-based aero-
dynamic shape optimization investigations of the common research modelwing”. In:
52nd Aerospace Sciences Meeting 2014 (2014). doi: 10.2514/6.2014-0567.

[10] Arno Ronzheimer. “Post-Parametrization of CAD-Geometries Using Freeform Defor-
mation and Grid Generation Techniques”. In: Jan. 2002, pp. 382–389. isbn: 3-540-
20258-7. doi: 10.1007/978-3-540-39604-8_48.

[11] Arno Ronzheimer. “Prospects of Geometry Parameterization based on Freeform De-
formation in MDO”. In: Nov. 2006, pp. 1–10. isbn: 84-85650-12-3.

[12] Arno Ronzheimer. “Shape Parameterisation Based on Freeform Deformation in Aero-
dynamic Design Optimization”. In: Jan. 2004.

[13] Jamshid A. Samareh. “Aerodynamic shape optimization based on free-form deforma-
tion”. In: Collection of Technical Papers - 10th AIAA/ISSMO Multidisciplinary Anal-
ysis and Optimization Conference 6 (2004), pp. 3672–3683. doi: 10.2514/6.2004-46
30.

[14] Thomas Sederberg and Scott Parry. “Free-form deformation of solid geometric mod-
els”. In: vol. 20. Aug. 1986, pp. 151–160. isbn: 0897911962. doi: 10.1145/15886.159
03.

13

https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/machFramework/MACH-Aero.html
https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/machFramework/MACH-Aero.html
https://doi.org/10.2514/6.2014-0567
https://doi.org/10.1007/978-3-540-39604-8_48
https://doi.org/10.2514/6.2004-4630
https://doi.org/10.2514/6.2004-4630
https://doi.org/10.1145/15886.15903
https://doi.org/10.1145/15886.15903

	General Theoretical and Mathematical Preliminaries
	FFD considerations
	FFD in DAFoam: pyGeo
	Initial setup
	Point selection and Troubleshooting
	Setting the Design Variables
	Simulation Example: NACA 0012

	Advanced Tips and Tricks
	Forum

